Interview Questions & Answers DataWeave (2025)

 
 
Interview Questions & Answers  Dataweave (2025)

1. What is DataWeave and why is it used in MuleSoft?
Answer:
DataWeave is a MuleSoft transformation language (DW 2.x in Mule 4) designed to map, transform, enrich, and filter data across formats like JSON, XML, CSV, and Java objects. Typical use cases include API payload conversion, file transformation, and building integration pipelines.
 
2.Transform JSON to XML using DataWeave

Q: Write a DataWeave script that maps:
{ "name": "John", "age": 30, "email": "john@example.com" }
to:
<person>
  <name>John</name>
  <age>30</age>
  <email>john@example.com</email>
</person>
A:
%dw 2.0
output application/xml
---
{
  person: {
    name: payload.name,
    age: payload.age,
    email: payload.email
  }
}
 
3. Basic String Manipulation
Q: Convert "John Doe" to uppercase.
A:
%dw 2.0
output application/json
---
{ name: upper(payload.name) }
Transforms "John Doe" to {"name":"JOHN DOE"}
 
4. Filtering Arrays
Q: Filter items with value > 15.
A:
%dw 2.0
output application/json
---
payload filter ((item) -> item.value > 15)
Returns filtered objects
 
5. Combining First & Last Name
Q: Given {"firstName":"John","lastName":"Doe"}, combine into "fullName".
A:
%dw 2.0
output application/json
---
{ fullName: payload.firstName ++ " " ++ payload.lastName }
Yields {"fullName":"John Doe"}
 
6. Real-World Scenario: JSON→XML (CRM → Marketing Platform)
Scenario: Transform CRM JSON {firstName,lastName,email} into Marketing XML {GivenName,FamilyName,EmailAddress}.
Solution:
%dw 2.0
output application/xml
---
Customer: {
  GivenName: payload.firstName,
  FamilyName: payload.lastName,
  EmailAddress: payload.email
}
This real example enabled seamless CRM‑to‑platform integration
 
Real‑World DataWeave Scenarios & Solutions

A. Flatten Nested JSON to CSV
Scenario: Convert complex JSON to flat CSV.
Solution Outline:
·         Inspect nested payload structure.
·         Use flatten, map, pluck.
·         Convert to CSV via output application/csv
 
B. Date Parsing & Formatting
Scenario: Reformat "2023-01-01T00:00:00Z" to "01/01/2023".
Solution:
%dw 2.0
output application/json
---
payload as Date {format: "yyyy-MM-dd'T'HH:mm:ssz"}
      as String {format: "MM/dd/yyyy"}
Result: "01/01/2023"
 
C. Lookup Transformation
Use a map or file as lookup table; then map + find to enrich or merge data. Handle missing keys carefully
 
D. Grouping Data
Group transactions by customer ID using groupBy:
payload groupBy $.customerId
       mapObject ((customerId, txns) -> {
           customerId: customerId,
           total: sum(txns.*.amount)
       })
Computes total per customer
 
E. Handling Null Values
Strategies include:
·         default keyword
·         when or unless
·         flatten to remove nulls
Mention error handling implications
 
F. Performance with Large Files
·         Use streaming mode and batch jobs
·         Avoid in-memory ops
·         Employ caching for repeated lookups — essential for high‑volume integrations
 
Preparation Tips
·         Know core functions: map, filter, groupBy, flatten, joinBy, pluck, default, read/write
·         Practice scenarios: JSON⇄XML/CSV, lookup, aggregation
·         Master patterns: error handling, streaming, batch mode
·         Use tools: DataWeave Playground for quick testing
 
Sample Q&A Summary Table

Question

What to Explain

Key DW Concepts

Transform formats

Show correct input/output script

input/output directive

Handle null

Use default or remove nulls

default, when, flatten

Optimize large data

Streaming, batch, caching

streaming mode, batch job

Lookup enrich

Merge payload with reference

map, find, pluck

Group Data

Summarize by key

groupBy, sum

 




DataWeave interview questions MuleSoft DataWeave interview questions DataWeave questions and answers DataWeave 2.0 interview questions MuleSoft interview questions DataWeave coding questions DataWeave transformation interview questionsAdvanced DataWeave interview questions MuleSoft DataWeave scenarios Common DataWeave interview questions Real-time DataWeave interview questions MuleSoft integration interview questions DataWeave scripting questions DataWeave for beginners interview DataWeave map and filter examplesMuleSoft developer interview preparation DataWeave functions and operators Transformations in DataWeave MuleSoft data transformation interview DataWeave performance optimization questions MuleSoft data mapping interview MuleSoft 4 DataWeave syntax DataWeave best practicesTop 25 DataWeave Interview Questions and Answers in MuleSoft [2025] Advanced DataWeave 2.0 Questions for MuleSoft Interviews DataWeave Interview Preparation Guide – MuleSoft Developer Tips Real-World DataWeave Interview Scenarios and Solutions

Comments